ACS Grout HF30 ### **River Sands** Chemwatch: 67-9989 Version No: 2.1.1.1 Safety Data Sheet according to WHS and ADG requirements Issue Date: 10/27/2016 Print Date: 03/21/2018 L.GHS.AUS.EN ### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | ACS Grout HF30 | |-------------------------------|----------------| | Synonyms | Not Available | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Portland cement based shrinkage compensated grout. ## Details of the supplier of the safety data sheet | Registered company name | River Sands | |-------------------------|--| | Address | 683 Beenleigh-Redland Bay Road Carbrook QLD 4130 Australia | | Telephone | +61 7 3412 8111 | | Fax | +61 7 3287 6445 | | Website | www.riversands.com.au | | Email | info@riversands.com.au | ## **Emergency telephone number** | Association /
Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | 13 11 26 | | Other emergency telephone numbers | Not Available | ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture | Poisons Schedule | Not Applicable | | |-------------------------------|--|--| | Classification ^[1] | Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Carcinogenicity Category 1B, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation) | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | ## Label elements Hazard pictogram(s) SIGNAL WORD DANGER ## Hazard statement(s) | H315 | Causes skin irritation. | |------|----------------------------| | H318 | Causes serious eye damage. | Chemwatch: 67-9989 Version No: 2.1.1.1 Page 2 of 13 **ACS Grout HF30** Issue Date: 10/27/2016 Print Date: 03/21/2018 | H317 | May cause an allergic skin reaction. | | |------|--------------------------------------|--| | H350 | May cause cancer. | | | H335 | May cause respiratory irritation. | | ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P271 | Use only outdoors or in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P281 | Use personal protective equipment as required. | | P261 | Avoid breathing dust/fumes. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | ## Precautionary statement(s) Response | P305+P351+P338 | F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|---|--| | P308+P313 | IF exposed or concerned: Get medical advice/attention. | | | P310 | Immediately call a POISON CENTER or doctor/physician. | | | P362 | Take off contaminated clothing and wash before reuse. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | | | | ## Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|--|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | ## Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. ## SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS ### **Substances** See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | |-------------|-----------|--| | 14808-60-7. | >60 | graded sand | | 65997-15-1 | 10-30 | portland cement | | | balance | Ingredients determined not to be hazardous | | | | may contain | | 14808-60-7 | | silica crystalline - quartz | ## **SECTION 4 FIRST AID MEASURES** | Description of first aid r | Description of first aid measures | | |----------------------------|--|--| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | Skin Contact | If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). | | ### **ACS Grout HF30** | | ► Seek medical attention in event of irritation. | | |------------|--|--| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | | ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short term repeated exposures to iron and its derivatives: - Always treat symptoms rather than history. - In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg. - Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin. - ▶ Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur. - Firon intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension. - Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination. - · Activated charcoal does not effectively bind iron. - Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea. - Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology] For acute or short term repeated exposures to dichromates and chromates: - Absorption occurs from the alimentary tract and lungs. - ▶ The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 14 days. - Establish airway, breathing and circulation. Assist ventilation. - ▶ Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is present. - ▶ Otherwise use gastric lavage with endotracheal intubation. - Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited. - ▶ British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective. - There are no antidotes. - Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer which may develop. The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/ protein complexes is thus avoided. [ILO Encyclopedia] [Ellenhorn and Barceloux:
Medical Toxicology] For acute or short-term repeated exposures to highly alkaline materials: - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. ### INGESTION: • Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - ► Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. - Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). ### SKIN AND EYE: ► Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] ## **SECTION 5 FIREFIGHTING MEASURES** Chemwatch: 67-9989 Version No: 2.1.1.1 ## Page 4 of 13 **ACS Grout HF30** Issue Date: 10/27/2016 Print Date: 03/21/2018 - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. | Fire Incompatibility | None known. | |------------------------|--| | dvice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. Decomposes on heating and produces toxic fumes of: silicon dioxide (SiO2) When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes. May emit corrosive fumes. | ### **SECTION 6 ACCIDENTAL RELEASE MEASURES** **HAZCHEM** ### Personal precautions, protective equipment and emergency procedures Not Applicable See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | | ► Remove all ignition sources. | |----------------|---| | | ▶ Clean up all spills immediately. | | Minor Spills | ▶ Avoid contact with skin and eyes. | | willior Spills | Control personal contact with the substance, by using protective equipment. | | | Use dry clean up procedures and avoid generating dust. | | | ► Place in a suitable, labelled container for waste disposal. | | | Moderate hazard. | | | ► CAUTION: Advise personnel in area. | | | ▶ Alert Emergency Services and tell them location and nature of hazard. | | | ► Control personal contact by wearing protective clothing. | | | Prevent, by any means available, spillage from entering drains or water courses. | | Major Spills | ► Recover product wherever possible. | | | ▶ IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or | | | other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. | | | ▶ ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. | | | ▶ If contamination of drains or waterways occurs, advise Emergency Services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 HANDLING AND STORAGE** ## Precautions for safe handling Safe handling ▶ Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs. ▶ Use in a well-ventilated area. ▶ Prevent concentration in hollows and sumps. ▶ DO NOT enter confined spaces until atmosphere has been checked. ▶ DO NOT allow material to contact humans, exposed food or food utensils. ▶ Avoid contact with incompatible materials. ### **ACS Grout HF30** Issue Date: 10/27/2016 Print Date: 03/21/2018 - When handling, DO NOT eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - ▶ Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - ► Store in original containers. - ▶ Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - ▶ Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ### Other information For major quantities: ► Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams}. • Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities. ### Conditions for safe storage, including any incompatibilities ## Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag. Suitable container NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer. ▶ Avoid contact with copper, aluminium and their alloys. Storage incompatibility ► Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. ## SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION ### **Control parameters** ### OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|-----------------------------|--------------------------|---------------|---------------|---------------|---------------| | Australia Exposure
Standards | graded sand | Quartz (respirable dust) | 0.1 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure
Standards | graded sand | Silica - Crystalline | Not Available | Not Available | Not Available | Not Available | | Australia Exposure
Standards | graded sand | Quartz (respirable dust) | 0.1 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure
Standards | portland cement | Portland cement | 10 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure
Standards | silica crystalline - quartz | Quartz (respirable dust) | 0.1 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure
Standards | silica crystalline - quartz | Silica - Crystalline | Not Available | Not Available | Not Available | Not Available | | Australia Exposure
Standards | silica crystalline - quartz | Quartz (respirable dust) | 0.1 mg/m3 | Not Available | Not Available | Not Available | ### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------|---|-------------|----------|-----------| | graded sand | Silica, crystalline-quartz; (Silicon dioxide) | 0.075 mg/m3 | 33 mg/m3 | 200 mg/m3 | | silica crystalline - quartz | Silica, crystalline-quartz; (Silicon dioxide) | 0.075 mg/m3 | 33 mg/m3 | 200 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |-----------------------------|---------------|---------------| | graded sand | Not Available | Not Available | | portland cement | 5000 mg/m3 | Not Available | | silica crystalline - quartz | Not Available | Not Available | Chemwatch: **67-9989** Version No: **2.1.1.1** Page 6 of 13 **ACS Grout HF30** Issue Date: 10/27/2016 Print Date: 03/21/2018 ### MATERIAL DATA ### **Exposure controls** Engineering controls are used to remove a hazard or
place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Eye and face protection ## Skin protection ### See Hand protection below ## Hands/feet protection • The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Chemwatch: 67-9989 Page 7 of 13 Issue Date: 10/27/2016 Version No: 2.1.1.1 Print Date: 03/21/2018 ### ACS Grout HF30 ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact. - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene. - ▶ nitrile rubber. - ▶ butyl rubber. - ▶ fluorocaoutchouc. - ▶ polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. ### **Body protection** See Other protection below ▶ Overalls. ▶ P.V.C. apron. Other protection ▶ Barrier cream. Skin cleansing cream. ▶ Eve wash unit. Not Available Thermal hazards ### Respiratory protection Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | AX P1
Air-line* | - | AX PAPR-P1 | | up to 50 x ES | Air-line** | AX P2 | AX PAPR-P2 | | up to 100 x ES | - | AX P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | AX PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure
ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - ▶ Try to avoid creating dust conditions. organic compounds(below 65 degC) ### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties | Appearance | Grey cement coloured free flowing powder; insoluble in water. | | | |--|---|---|----------------| | | | | | | Physical state | Divided Solid | Relative density (Water = 1) | ~1300 (bulk) | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component
(%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Applicable | ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** ## Information on toxicological effects Inhaled Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a Chemwatch: **67-9989** Page **9** of **13**Version No: **2.1.1.1 ACS Grout HF30** Issue Date: 10/27/2016 Print Date: 03/21/2018 chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation may result in chrome ulcers or sores of nasal mucosa and lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function. ## Ingestion The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. ### Skin Contact Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known as "Stone" was a special form of calcium sulfate hemihydrate containing alphahemihydrate crystals that provide high compression strength to the moulds. Beta-hemihydrate (normal Plaster of Paris) does not cause skin burns in similar circumstances. Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ## Eye When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. On the basis of epidemiological data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may produce cancer in humans. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production. Very fine Al2O3 powder was not fibrogenic in rats, guinea pigs, or hamsters when inhaled for 6 to 12 months and sacrificed ### at periods up to 12 months following the last exposure. When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C. The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear
evidence of carcinogenicity. ## Chronic Issue Date: 10/27/2016 Print Date: 03/21/2018 Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4 % silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction. There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveolii (sub 5 um) are able to produce pathogenic effects in the lungs. Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos. In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite) In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter. In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intra-abdominal tumours were found. Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis. However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis. Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]. Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels. Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity. Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996 Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections Repeated exposures, in an occupational setting, to high levels of fine- divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50,000 inch), are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion (exertional dyspnea), increased chest expansion, weakness and weight loss. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe. Other signs or symptoms include altered breath sounds, diminished lung capacity, diminished oxygen uptake during exercise, emphysema and pneumothorax (air in lung cavity) as a rare complication. Removing workers from possibility of further exposure to dust generally leads to halting the progress of the lung abnormalities. Where worker-exposure potential is high, periodic examinations with emphasis on lung dysfunctions should be undertaken Dust inhalation over an extended number of years may produce pneumoconiosis. Pneumoconiosis is the accumulation of dusts in the lungs and the tissue reaction in its presence. It is further classified as being of noncollagenous or collagenous types. Noncollagenous pneumoconiosis, the benign form, is identified by minimal stromal reaction, consists mainly of reticulin fibres, an intact alveolar architecture and is potentially reversible. | ACS Grout HF30 | TOXICITY Not Available | IRRITATION Not Available | |-----------------|-------------------------|---------------------------| | graded sand | TOXICITY Not Available | IRRITATION Not Available | | portland cement | TOXICITY Not Available | IRRITATION Not Available | Chemwatch: 67-9989 Page 11 of 13 Issue Date: 10/27/2016 Version No: 2.1.1.1 Print Date: 03/21/2018 ### **ACS Grout HF30** | silica crystalline - quartz | TOXICITY Not Available | IRRITATION Not Available | | |-----------------------------|---|---------------------------|--| | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | ### WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS ### SILICA CRYSTALLINE -QUARTZ The International Agency for Research on Cancer (IARC) has classified occupational exposures to respirable (<5 um) crystalline silica as being carcinogenic to humans . This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. $Intermittent\ exposure\ produces;\ focal\ fibrosis,\ (pneumoconiosis),\ cough,\ dyspnoea,\ liver\ tumours.$ * Millions of particles per cubic foot (based on impinger samples counted by light field techniques). NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles. | Acute Toxicity | 0 | Carcinogenicity | ~ | |-----------------------------------|----------|-----------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ~ | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: - ★ Data available but does not fill the criteria for classification - ✓ Data available to make classification ### **SECTION 12 ECOLOGICAL INFORMATION** ### **Toxicity** | TEST DURATION (HR) Not Available TEST DURATION (HR) Not Available TEST DURATION (HR) | SPECIES Not Available SPECIES Not Available SPECIES | VALUE SOI Not No Available Ava VALUE SOI Not No Available Ava VALUE SOI VALUE SOI | |--|---|--| | TEST DURATION (HR) Not Available TEST DURATION (HR) | SPECIES Not Available | Available Ava VALUE SOI Not No Available Ava | | Not Available TEST DURATION (HR) | Not Available | Not No
Available Ava | | TEST DURATION (HR) | | Available Ava | | | SPECIES | VALUE SO | | | | 1 1 | | Not Available | Not Available | Not No
Available Ava | | TEST DURATION (HR) | SPECIES | VALUE SO | | Not Available | Not Available | Not No
Available Ava | | | Not Available | | Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) -Bioconcentration Data 8. Vendor Data ## DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------
---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | Issue Date: 10/27/2016 Print Date: 03/21/2018 ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | ## Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | ## **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods **Product / Packaging** disposal - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. ### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ▶ Reuse - ► Recycling - ► Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. ## **SECTION 14 TRANSPORT INFORMATION** ### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture GRADED SAND(14808-60-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs PORTLAND CEMENT(65997-15-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS Issue Date: 10/27/2016 Print Date: 03/21/2018 Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) ### SILICA CRYSTALLINE - QUARTZ(14808-60-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Exposure Standards | International Agency for Research on Cancer (IARC) - Agents Classified | | |---|--|--| | Australia Inventory of Chemical Substances (AICS) | by the IARC Monographs | | | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (portland cement; silica crystalline - quartz; graded sand) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Υ | | Japan - ENCS | N (portland cement) | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | N (portland cement) | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 OTHER INFORMATION** ### Other information ## Ingredients with multiple cas numbers | Name | CAS No | |-----------------------------|--| | silica crystalline - quartz | 14808-60-7, 122304-48-7, 122304-49-8, 12425-26-2, 1317-79-9, 70594-95-5, 87347-84-0, 308075-07-2 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.