CCS Petrol Resistant Sealer - Coloured

Concrete Colour Systems

Chemwatch: **28-0361** Version No: **5.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 01/11/2019 Print Date: 29/01/2020 S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier	
Product name	CCS Petrol Resistant Sealer - Coloured
Synonyms	Not Available
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available
Relevant identified uses of the	substance or mixture and uses advised against
Relevant identified uses	Concrete and masonry coating.
Details of the supplier of the sa	fety data sheet
Registered company name	Concrete Colour Systems
Address	683 Beenleigh-Redland Bay Road Carbrook QLD 4130 Australia
Telephone	+61 7 3412 8111 1800 077 744
Fax	+61 7 3287 6445
Website	www.riversands.com.au
Email	ccscolour@riversands.com.au
Emergency telephone number	
Association / Organisation	Poisons Information Centre
Emergency telephone numbers	13 11 26
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	S6	
Classification ^[1]	Flammable Liquid Category 3, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD WARNING

lazard	statement(s١

H226	Flammable liquid and vapour.
H312	Harmful in contact with skin.
H332	Harmful if inhaled.
H315	Causes skin irritation.

Precautionary statement(s) Prevention

r recautionary statement(s) r revention		
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P233	Keep container tightly closed.	
P271	Use only outdoors or in a well-ventilated area.	
P240	Ground/bond container and receiving equipment.	
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.	
P242	Use only non-sparking tools.	
P243	Take precautionary measures against static discharge.	
P261	Avoid breathing mist/vapours/spray.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

Specific treatment (see advice on this label).
Specific measures (see advice on this label).
Take off contaminated clothing and wash before reuse.
In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
Call a POISON CENTER or doctor/physician if you feel unwell.
IF ON SKIN: Wash with plenty of water and soap.
IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.
IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
-----------	--

Precautionary statement(s) Disposal

P501	Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1330-20-7	30-60	xylene
64742-95-6.	10-30	naphtha petroleum, light aromatic solvent
9065-11-6	10-30	acrylic resin
108-65-6	10-30	propylene glycol monomethyl ether acetate, alpha-isomer

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically for simple esters:

BASIC TREATMENT

Establish a patent airway with suction where necessary.

Watch for signs of respiratory insufficiency and assist ventilation as necessary.

Administer oxygen by non-rebreather mask at 10 to 15 l/min.

Monitor and treat, where necessary, for pulmonary oedema

Monitor and treat, where necessary, for shock.

DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

Give activated charcoal.

ADVANCED TREATMENT

Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

Positive-pressure ventilation using a bag-valve mask might be of use.

Monitor and treat, where necessary, for arrhythmias.

Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.

Drug therapy should be considered for pulmonary oedema.

Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.

Treat seizures with diazepam.

Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.

Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome

Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute or short term repeated exposures to xylene:

Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.

Pulmonary absorption is rapid with about 60-65% retained at rest.

Primary threat to life from ingestion and/or inhalation, is respiratory failure.

Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.

Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and

cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.

Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min Sampling Time End of shift Last 4 hrs of shift Comments

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

Foam

Dry chemical powder.

BCF (where regulations permit)

Carbon dioxide.

Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
ce for firefighters	
Fire Fighting	Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material.
HAZCHEM	•3Y

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.	
Major Spills	Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard.	

May be violently or explosively reactive.

Wear breathing apparatus plus protective gloves.

Prevent, by any means available, spillage from entering drains or water course.

Consider evacuation (or protect in place).

No smoking, naked lights or ignition sources

Increase ventilation.

Stop leak if safe to do so.

Water spray or fog may be used to disperse /absorb vapour.

Contain spill with sand, earth or vermiculite.

Use only spark-free shovels and explosion proof equipment.

Collect recoverable product into labelled containers for recycling.

Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal.

Wash area and prevent runoff into drains.

If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

 $\ensuremath{\text{DO NOT}}$ allow clothing wet with material to stay in contact with skin

Avoid all personal contact, including inhalation.

Wear protective clothing when risk of overexposure occurs

Use in a well-ventilated area

Prevent concentration in hollows and sumps.

DO NOT enter confined spaces until atmosphere has been checked.

Avoid smoking, naked lights or ignition sources.

Avoid generation of static electricity.

Safe handling

Other information

DO NOT use plastic buckets Earth all lines and equipment.

Use spark-free tools when handling.

Avoid contact with incompatible materials.

When handling, DO NOT eat, drink or smoke.

Keep containers securely sealed when not in use

Avoid physical damage to containers.

Always wash hands with soap and water after handling.

Work clothes should be laundered separately.

Use good occupational work practice.

Observe manufacturer's storage and handling recommendations contained within this SDS.

Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Store in original containers in approved flammable liquid storage area.

Store away from incompatible materials in a cool, dry, well-ventilated area.

DO NOT store in pits, depressions, basements or areas where vapours may be trapped

No smoking, naked lights, heat or ignition sources.

Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access

Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets,

allowable quantities and minimum storage distances.

Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.

Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas detectors.

Keep adsorbents for leaks and spills readily available.

Protect containers against physical damage and check regularly for leaks.

Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

Store in grounded, properly designed and approved vessels and away from incompatible materials.

For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.

Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Packing as supplied by manufacturer.

Plastic containers may only be used if approved for flammable liquid.

Check that containers are clearly labelled and free from leaks.

For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C)

For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)

Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head

packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact

with inner and outer packages

In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb

any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

Avoid reaction with oxidising agents

Avoid strong acids, bases

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available

EMERGENCY LIMITS					
Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
xylene	Xylenes		Not Available	Not Available	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl-2-acetate)		Not Available	Not Available	Not Available
Ingredient	Original IDLH	Revised IDLH			
xylene	900 ppm	Not Available			
naphtha petroleum, light aromatic solvent	Not Available	Not Available			
acrylic resin	Not Available	Not Available			
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available			

Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Safety glasses with side shields.

Chemical goggles

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

Wear chemical protective gloves, e.g. PVC

Wear safety footwear or safety gumboots, e.g. Rubber

For esters:

Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

f/min.)

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact.
- chemical resistance of glove material,
 - glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Boo	dy protection
-----	---------------

See Other protection below

Overalls.

PVC Apron.

PVC protective suit may be required if exposure severe

Eyewash unit.

Ensure there is ready access to a safety shower.

Other protection

Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.

For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).

Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-qenerated* selection:

CCS Petrol Resistant Sealer - Coloured

Material	СРІ
PE/EVAL/PE	A
PVA	A
TEFLON	A
VITON	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVC	С
PVDC/PE/PVDC	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	A-2	A-PAPR-2
up to 50 x ES	-	A-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Coloured viscous flammable liqu	id with distinct aromatic hydrocarbon odour; does not i	mix with water.
Physical state	Liquid	Relative density (Water = 1)	0.975-0.995
Odour	Not Available	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	432-530
pH (as supplied)	Not Available	Decomposition temperature	Not Available
lelting point / freezing point (°C)	-48	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	136-191	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	27-31	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.1	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.0	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	7.5 @ 38C	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	3.7	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Reactivity	Oct Station /
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Inhaled Inhalation hazard is increased at higher temperatures. On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Animal testing showed no toxic effects from inhaling PGMEA except at very high concentrations. A concentration of 1000 parts per million (0.1%) caused no effects. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant Accidental ingestion of the material may be damaging to the health of the individual. Ingestion Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Skin contact with the material may be harmful; systemic effects may result following absorption. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Animal testing showed repeated application of commercial grade PGMEA to skin caused slight redness and very mild exfoliation **Skin Contact** Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to. Eye There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.

Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight redness of the conjunctiva and slight

injury to the cornea in animal testing.

The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion

exposure

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational Animal testing shows repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) causes mild liver

and kidney damage. The beta-isomer, a minor component, may cause birth defects if PGMEA is inhaled during pregnancy. Otherwise, PGMEA has not been shown to have developmental toxicity. It may damage the foetus but only at levels that are also toxic to the mother. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity.

Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

CS Petrol Resistant Sealer - Coloured	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant
	Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE
xylene	Oral (rat) LD50: 3523-8700 mg/kg ^[2]	Eye (rabbit): 87 mg mild
		Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit):500 mg/24h moderate
		Skin: adverse effect observed (irritating) ^[1]
	TOXICITY	IRRITATION
naphtha petroleum, light	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
aromatic solvent	Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2]	Skin: adverse effect observed (irritating) ^[1]
	Oral (rat) LD50: >4500 mg/kg ^[1]	
	TOXICITY	IRRITATION
acrylic resin	Not Available	Not Available
	TOXICITY	IRRITATION
propylene glycol	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
monomethyl ether acetate, alpha-isomer	Inhalation (rat) LC50: 6510.0635325 mg/l/6h ^[2]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (rat) LD50: 5155 mg/kg ^[1]	
Legend:	Value obtained from Europe ECHA Registered Substance	s - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless

Reproductive effector in rats

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

XYLENE

Chronic

. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans

Evidence of carcinogenicity may be inadequate or limited in animal testing

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT

Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe]

For Low Boiling Point Naphthas (LBPNs):

Acute toxicity:

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Repeat dose toxicity:

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAFC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells.

For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay . Mixed results were observed for UDS and the mouse lymphoma assay. While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect so fhuman exposure to LBPN substances.

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals' lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

For trimethylbenzenes

Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine.

Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation.

Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness.

Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-

trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils.

Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations.

Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4-trimethylbenzene caused reproductive toxicity. For C9 aromatics (typically trimethylbenzenes – TMBs)

Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively.

Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that it sensitizes skin.

Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutation-causing ability: No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing.

Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

ACRYLIC RESIN

No significant acute toxicological data identified in literature search.

CAUTION: The chronic health effects of acrylic monomers are under review.

Use good occupational work practices to avoid personal contact.

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. II.C.II *Shin-Etsu SDS

For propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic acids.

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body.

As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization.

Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene

glycol ethers are unlikely to possess genetic toxicity.

Animal testing shows that high concentrations (for example, 0.5%) are associated with birth defects but lower exposures have not been shown to cause adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material; the remaining 90% is alpha isomer. Hazard appears low, but emphasizes the need for care in handling this chemical.

Carcinogenicity	Acute Toxicity
Reproductivity	Skin Irritation/Corrosion
STOT - Single Exposure	Serious Eye Damage/Irritation
STOT - Repeated Exposure	Respiratory or Skin sensitisation
Aspiration Hazard	Mutagenicity

Legend:

- Data either not available or does not fill the criteria for classification
- Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

CCS Petrol Resistant Sealer - Coloured	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
xylene	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	2.6mg/L	2
	EC50	48	Crustacea	1.8mg/L	2
	EC50	72	Algae or other aquatic plants	3.2mg/L	2
	NOEC	73	Algae or other aquatic plants	0.44mg/L	2

naphtha petroleum, light aromatic solvent	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	4.1mg/L	2
	EC50	48	Crustacea	3.2mg/L	2
	EC50	72	Algae or other aquatic plants	>1- mg/L	2
	NOEC	72	Algae or other aquatic plants	=1mg/L	1
acrylic resin	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Availabl
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	100mg/L	1
propylene glycol	EC50	48	Crustacea	373mg/L	2
monomethyl ether acetate, alpha-isomer Legend:	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	96	Algae or other aquatic plants	>=1- mg/L	2
	NOEC Extracted from Suite V3.12 (G	96 1. IUCLID Toxicity Data 2. Europe ECHA	Algae or other aquatic plants Registered Substances - Ecotoxicological Inform. 4. US EPA, Ecotox database - Aquatic Toxicity Da	>=1- mg/L ation - Aquatic Toxicity ta 5. ECETOC Aquat	2 y 3. EP

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
xylene	MEDIUM (BCF = 740)	
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)	

Mobility in soil

Ingredient	Mobility
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible.

Otherwise:

Product / Packaging disposal

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	
HAZCHEM	

•3Y

Land transport (ADG)

UN number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 163 223 367		

5 L Limited quantity

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)			
	ICAO/IATA Class	3		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	3L		
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions		A3 A72 A192	
	Cargo Only Packing Instructions		366	
	Cargo Only Maximum Qty / Pack		220 L	
	Passenger and Cargo Packing Instructions		355	
	Passenger and Cargo Maximum Qty / Pack		60 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y344	
	Passenger and Cargo Limited Maximum Qty / Pack		10 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263			
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)			
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable			
Packing group	III			
Environmental hazard	Not Applicable			
Special precautions for user	EMS Number F-E , S-E Special provisions 163 223 367 955 Limited Quantities 5 L			

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

XYLENE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Hazardous chemicals which may require Health Monitoring

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Part 2, Section Seven - Appendix I

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named)

mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

Chemical Footprint Project - Chemicals of High Concern List GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

ACRYLIC RESIN IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements
IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk
International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model
Regulations

National Inventory Status

National Inventory	Status
Australia - AICS	No (acrylic resin)
Canada - DSL	No (acrylic resin)
Canada - NDSL	No (propylene glycol monomethyl ether acetate, alpha-isomer; xylene; naphtha petroleum, light aromatic solvent; acrylic resin)
China - IECSC	No (acrylic resin)
Europe - EINEC / ELINCS / NLP	No (acrylic resin)
Japan - ENCS	No (acrylic resin)
Korea - KECI	No (acrylic resin)
New Zealand - NZIoC	No (acrylic resin)
Philippines - PICCS	No (acrylic resin)
USA - TSCA	No (acrylic resin)
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	No (acrylic resin)
Russia - ARIPS	No (acrylic resin)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2019
Initial Date	08/10/2014

SDS Version Summary

Version	Issue Date	Sections Updated
4.1.1.1	22/10/2019	Physical Properties
5.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.