CCS Industrial Epoxy XT100 - Part B

Concrete Colour Systems

Chemwatch: **81-0296**Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **05/25/2017**Print Date: **05/26/2017**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	CCS Industrial Epoxy XT100 - Part B	
Synonyms	Not Available	
Proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine and benzene-1,3-dimethanamine)	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevan	t identified
	uses

Epoxy flooring primer resin.

Details of the supplier of the safety data sheet

Registered company name	Concrete Colour Systems
Address	683 Beenleigh-Redland Bay Road Carbrook QLD 4130 Australia
Telephone	+61 7 3412 8111 1800 077 744
Fax	+61 7 3287 6445
Website	www.riversands.com.au
Email	ccscolour@riversands.com.au

Emergency telephone number

Association / Organisation	Poisons Information Centre
Emergency telephone numbers	13 11 26
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	S5
Classification ^[1]	Metal Corrosion Category 1, Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 1B, Serious Eye Damage Category 1, Respiratory Sensitizer Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Version No: **2.1.1.1**

CCS Industrial Epoxy XT100 - Part B

Issue Date: **05/25/2017** Print Date: **05/26/2017**

SIGNAL WORD DANGER

Hazard statement(s)

H290	May be corrosive to metals.
H302	Harmful if swallowed.
H332	Harmful if inhaled.
H314	Causes severe skin burns and eye damage.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H317	May cause an allergic skin reaction.
H336	May cause drowsiness or dizziness.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P285	In case of inadequate ventilation wear respiratory protection.
P234	Keep only in original container.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER or doctor/physician.	
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician.	
P363	Wash contaminated clothing before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P390	Absorb spillage to prevent material damage.	
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501	Dispose of contents/container in accordance with local regulations.
FJUI	Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
2855-13-2	10-25	isophorone diamine
100-51-6	>25	benzyl alcohol
1477-55-0	1-15	benzene-1,3-dimethanamine

balance

Ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

If this product comes in contact with the eyes: Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally **Eye Contact** lifting the upper and lower lids ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: ▶ Immediately remove all contaminated clothing, including footwear. **Skin Contact** • Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. ▶ Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid • Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ▶ Transport to hospital, or doctor. Inhalation ▶ Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. ▶ Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) ► If swallowed do **NOT** induce vomiting ▶ If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

Indication of any immediate medical attention and special treatment needed

For acute or short-term repeated exposures to highly alkaline materials:

• Respiratory stress is uncommon but present occasionally because of soft tissue edema.

Seek medical advice.

- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- $\bullet \ \, \text{The presence of shock suggests perforation and mandates an intravenous line and fluid administration}. \\$
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

• Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam.
- Dry chemical powder.

CCS Industrial Epoxy XT100 - Part B

- ▶ BCF (where regulations permit).
- · Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

Advice for firefighters

Fire Fighting Fire F	Advice for intelligities.	3
Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: Fire/Explosion Hazard Fire/Explosion Hazard find (CO2) , aldehydes , nitrogen oxides (NOx) , other pyrolysis products typical of burning organic material.	Fire Fighting	 Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
may emit corrosive turnes.	Fire/Explosion Hazard	 ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: , carbon dioxide (CO2) , aldehydes , nitrogen oxides (NOx) ,
HAZCHEM 2X	HAZCHEM	2X

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material	for containment and cleaning up
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- ► DO NOT allow clothing wet with material to stay in contact with skin
- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ► Store in original containers.
- · Keep containers securely sealed.
- Other information
- ▶ Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	Plastic container
Storage incompatibility	 Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Avoid contact with copper, aluminium and their alloys. Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	benzene-1,3-dimethanamine	m-Xylene-a,a'-diamine	Not Available	Not Available	0.1 mg/m3	Sk

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
benzyl alcohol	Benzyl alcohol	30 ppm	52 ppm	740 ppm
Ingredient	Original IDLH	R	evised IDLH	
isophorone diamine	Not Available	N	lot Available	
benzyl alcohol	Not Available	N	lot Available	
benzene-	Not Available	N	lot Available	

MATERIAL DATA

1.3-dimethanamine

None assigned. Refer to individual constituents.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

Appropriate engineering controls

The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Issue Date: 05/25/2017 Print Date: 05/26/2017

contaminant in use

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Refer also to protective measures for the other component used with the product. Read both SDS before using; store and attach SDS together.

Personal protection

- Full face shield may be required for supplementary but never for primary protection of eyes.
- Eve and face protection

document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber
- ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

- ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

Hands/feet protection

Chemwatch: 81-0296 Page 7 of 17 Issue Date: 05/25/2017 Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Print Date: 05/26/2017

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Leather wear not recommended: Contaminated leather footwear, watch bands, should be destroyed, i.e. burnt, as they cannot be adequately decontaminated

Body protection

See Other protection below

Other protection

- Overalls.
- ▶ PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- ▶ Evewash unit.
- Ensure there is ready access to a safety shower.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

CCS Industrial Epoxy XT100 - Part B

Material	СРІ
BUTYL	С
VITON	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3),Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Clear straw/yellow liquid with amine odour; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	1.01
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	>11	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	185
Initial boiling point and boiling range (°C)	>200	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>100 (CC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	1.36 @ 21C	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

Inhaled

Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produces tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing.

Chemwatch: 81-0296 Version No: 2.1.1.1

Page 9 of 17

CCS Industrial Epoxy XT100 - Part B

Issue Date: 05/25/2017 Print Date: 05/26/2017

Ingestion

Skin Contact

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The

vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred.

Aliphatic and alicyclic amines are generally well absorbed from the gut. Corrosive action may cause tissue damage throughout the gastrointestinal tract. Detoxification is thought to occur in the liver, kidney and intestinal mucosa with the enzymes, monoamine oxidase and diamine oxidase (histaminase) having a significant role.

The material can produce chemical burns following direct contact with the skin.

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. Eye

Chronic

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

CCS Industrial Epoxy XT100 - Part B	TOXICITY	IRRITATION	
	Not Available	Not Available	
	TOXICITY	IRRITATION	
isophorone diamine	Oral (rat) LD50: 1030 mg/kg] ^[2]	Not Available	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 2000 mg/kg ^[2]	Eye (rabbit): 0.75 mg open SEVERE	
benzyl alcohol	Inhalation (rat) LC50: 2000 ppm/8hr ^[2]	Skin (man): 16 mg/48h-mild	
	Oral (rat) LD50: 1230 mg/kgd ^[2]	Skin (rabbit):10 mg/24h open-mild	
	TOXICITY	IRRITATION	
benzene-	Dermal (rabbit) LD50: 2000 mg/kg ^[2]	Eye (rabbit): 0.05 mg/24h SEVERE	
1,3-dimethanamine	Inhalation (rat) LC50: 175 ppm/1hr ^[2]	Skin (rabbit): 0.75 mg/24h SEVERE	
	Oral (rat) LD50: >200 mg/kg ^[1]		
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS.		

Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

For isophorone diamine

ISOPHORONE DIAMINE

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation.

From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was

Chemwatch: **81-0296** Page **10** of **17**

Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Issue Date: **05/25/2017** Print Date: **05/26/2017**

observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in vitro* and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For benzyl alkyl alcohols:

Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzene, only a marginal concern has been assigned to phenethyl alcohol due to limited mechanistic analogy.

For benzoates:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers.

Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed.

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur.

Mutagenicity: All chemicals showed no mutagenic activity in *in vitro* Ames tests. Various results were obtained with other *in vitro* genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity *in vivo*. While some mixed and/or equivocal *in vitro* chromosomal/chromatid responses have been observed, no genotoxicity was observed in the *in vivo* cytogenetic, micronucleus, or other assays. The weight of the evidence of the *in vitro* and *in vivo* genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and

BENZYL ALCOHOL

Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Issue Date: 05/25/2017 Print Date: 05/26/2017

benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur.

Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eves.

Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a suffcient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure.

Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation .Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear.

Axillae Bilateral axillary (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy.

Face Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic.

Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this. Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported . The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen.

Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified.. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were

Chemwatch: 81-0296 Page 12 of 17 Issue Date: 05/25/2017 Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Print Date: 05/26/2017

associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol,

Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon . Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare.

General/respiratory: Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma . Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis.

Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways.

Prohaptens

Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens.

In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal.

The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavincontaining monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases,

UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin . These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity.

QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha, beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. A member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS) based in part on their self-limiting properties as flavouring substances in food; their rapid absorption. metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavouring substances.

All members of this group are aromatic primary alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals. The substances in this group:

- contain a benzene ring substituted with a reactive primary oxygenated functional group or can be hydrolysed to such a functional group
- the major pathway of metabolic detoxification involves hydrolysis and oxidation to yield the corresponding benzoic acid derivate which is excreted either as the free acid or the glycine conjugate
- they show a consistent pattern of toxicity in both short- and long- term studies and
- they exhibit no evidence of genotoxicity in standardised batteries of in vitro and in vivo assays.

The benzyl derivatives are rapidly absorbed through the gut, metabolised primarily in the liver, and excreted in the urine as glycine conjugates of benzoic acid derivatives.

In general, aromatic esters are hydrolysed in vivo through the catalytic activity of carboxylesterases, the most important of which are the A-esterases. Hydrolysis of benzyl and benzoate esters to yield corresponding alcohols and carboxylic acids

Chemwatch: **81-0296**Version No: **2.1.1.1**

Page 13 of 17

CCS Industrial Epoxy XT100 - Part B

Issue Date: **05/25/2017**Print Date: **05/26/2017**

and hydrolysis of acetals to yield benzaldehyde and simple alcohols have been reported in several experiments.

The alcohols and aldehydes are rapidly oxidised to benzoic acid while benzoate esters are hydrolysed to benzoic acid. Flavor and Extract Manufacturers Association (FEMA)

The aryl alkyl alcohol (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles.

The AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity.

At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal.

With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxyethyl AAA alcohols, human sensitization studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low.

NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels.

No carcinogenicity in rats or mice was observed in 2-year chronic testing of benzyl alcohol or a-methylbenzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenicity in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo micronucleus assays were negative.

It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients. The Research Institute for Fragrance Materials (RIFM) Expert Panel

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

For benzene-1,3-dimethanamine (m-xylene-alpha,alpha'- diamine)

The toxicity via oral administration and inhalation was tissue damage in the digestive and respiratory organs, respectively, which are the first contact sites. The chemical is corrosive to rat and mouse skin and a sensitiser in the guinea pig maximisation test.

In the 28-day repeated dose toxicity study [OECD TG 407], the chemical was given to rats by gavage at doses of 0, 10, 40, 150 and 600 mg/kg b.w/day. One male and four females died, and salivation, low locomotor activity and piloerection were noted in the 600 mg/kg group. Furthermore, ulceration, acanthosis with hyperkeratosis and submucosal inflammation were observed in the forestomach. No adverse effects were observed in the 150 mg/kg and the lower dose groups.

A reproductive /developmental toxicity screening test [OECD TG 421] of rats by gavage at 50, 150 and 450 mg/kg b.w/day for at least 41 days resulted in death in one male in the 150 mg/kg group, and three males and one female in the 450 mg/kg group. In almost all 450 mg/kg animals, the same histopathological changes as the above 28-day study were observed in the forestomach. No adverse effects were found at 50 mg/kg b.w/day. Based on this information, the NOAEL for repeated dose toxicity is considered to be 50 mg/kg b.w/day.

In the above reproductive/developmental toxicity screening test [OECD TG 421] the substance was administered from 14 days before mating to 20 days after mating in males and to day 3 of lactation in females. No adverse effects were observed in terms of copulation, fertility, delivery and nursing of parents, and the viability, body weight and morphology of offspring. The NOAEL for reproductive/developmental toxicity (F1 offspring) was 450 mg/kg b.w/day.

The chemical was not mutagenic in bacteria [OECD TG 471 & 472]. It induced neither chromosomal aberrations in mammalian cells *in vitro* [OECD TG 473] nor micronuclei in mouse bone marrow *in vivo* [OECD TG 474].

In clinical observation of workers during the manufacturing process, the chemical appears to act as a gastrointestinal irritant. It has also been shown to cause contact sensitisation reactions in workers at concentrations equal to and below 0.1 mg/m3

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

ISOPHORONE
DIAMINE & BENZYL
ALCOHOL &
BENZENE1.3-DIMETHANAMINE

BENZENE-

1,3-DIMETHANAMINE

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

ISOPHORONE DIAMINE & BENZENE-1,3-DIMETHANAMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high

Continued...

Chemwatch: 81-0296 Page 14 of 17 Issue Date: 05/25/2017 Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Print Date: 05/26/2017

levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	0
Skin Irritation/Corrosion	~	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

- 🗶 Data available but does not fill the criteria for classification
- ✓ Data available to make classification
- Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

CCS Industrial Epoxy XT100 - Part B	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
isophorone diamine	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	54.352mg/L	3
	EC50	48	Crustacea	17.4mg/L	4
	EC50	96	Algae or other aquatic plants	7.221mg/L	3
	EC10	72	Algae or other aquatic plants	=3.1mg/L	1
	NOEC	72	Algae or other aquatic plants	=1.5mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
benzyl alcohol	LC50	96	Fish	10mg/L	4
	EC03	168	Algae or other aquatic plants	=16mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
benzene- 1,3-dimethanamine	LC50	96	Fish	191.854mg/L	3
	EC50	96	Algae or other aquatic plants	33.195mg/L	3
				ical Information - Ag	

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isophorone diamine	HIGH	HIGH
benzyl alcohol	LOW	LOW
benzene- 1,3-dimethanamine	HIGH	HIGH

Bioaccumulative potential

CCS Industrial Epoxy XT100 - Part B

Ingredient	Bioaccumulation
isophorone diamine	LOW (BCF = 3.4)
benzyl alcohol	LOW (LogKOW = 1.1)
benzene- 1,3-dimethanamine	LOW (BCF = 2.7)

Mobility in soil

Ingredient	Mobility
isophorone diamine	LOW (KOC = 340.4)
benzyl alcohol	LOW (KOC = 15.66)
benzene- 1,3-dimethanamine	LOW (KOC = 914.6)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ► Consult State Land Waste Management Authority for disposal.
- Material may be disposed of by controlled burning in an approved incinerator or buried in an approved landfill.
- Prior to disposal in a landfill the material should be mixed with the other component and reacted to render the material inert.
- ▶ Extreme caution should be taken when heating the resin/curing agent mix.
- Recycle containers where possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

2X

HAZCHEM

Land transport (ADG)

UN number	2735		
UN proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine and benzene-1,3-dimethanamine)		
Transport hazard class(es)	Class 8 Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 223 274 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

UN number	2735			
UN proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine and benzene-1,3-dimethanamine)			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	8 Not Applicable 8L		
Packing group	III			
Environmental hazard	Not Applicable			

Chemwatch: 81-0296 Page **16** of **17** Issue Date: 05/25/2017 Version No: 2.1.1.1 Print Date: 05/26/2017

CCS Industrial Epoxy XT100 - Part B

	Special provisions	A3A803
	Cargo Only Packing Instructions	856
	Cargo Only Maximum Qty / Pack	60 L
Special precautions for user	Passenger and Cargo Packing Instructions	852
ioi usei	Passenger and Cargo Maximum Qty / Pack	5 L
	Passenger and Cargo Limited Quantity Packing Instructions	Y841
	Passenger and Cargo Limited Maximum Qty / Pack	1 L

Sea transport (IMDG-Code / GGVSee)

UN number	2735		
UN proper shipping name	Amines, liquid, corrosive, n.o.s. * (contains isophorone diamine and benzene-1,3-dimethanamine)		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-A, S-B Special provisions 223 274 Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ISOPHORONE DIAMINE(2855-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

BENZYL ALCOHOL(100-51-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

BENZENE-1,3-DIMETHANAMINE(1477-55-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

National Inventory	Status
Australia - AICS	Y
Canada - DSL	Y
Canada - NDSL	N (benzyl alcohol; isophorone diamine; benzene-1,3-dimethanamine)
China - IECSC	Y
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (benzyl alcohol; isophorone diamine; benzene-1,3-dimethanamine)
Korea - KECI	Y
New Zealand - NZIoC	Y
Philippines - PICCS	Y
USA - TSCA	Y
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Chemwatch: 81-0296 Page 17 of 17 Issue Date: 05/25/2017 Version No: 2.1.1.1

CCS Industrial Epoxy XT100 - Part B

Print Date: 05/26/2017

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.