ACS Mine Speed F500 River Sands

Chemwatch: **5305-94** Version No: **3.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **01/11/2019**Print Date: **06/10/2020**S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier Product name ACS Mine Speed F500 Synonyms Not Available Other means of identification Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Liquid set accelerator for Shotcrete.

Details of the supplier of the safety data sheet

Registered company name	River Sands
Address	683 Beenleigh-Redland Bay Road Carbrook QLD 4130 Australia
Telephone	+61 7 3412 8111
Fax	+61 7 3287 6445
Website	www.riversands.com.au
Email	info@riversands.com.au

Emergency telephone number

Association / Organisation	River Sands
Emergency telephone numbers	13 11 26
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification ^[1]	Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation)	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Signal word	Danger
Olgilai Wola	Danger

Hazard statement(s)

nazaru statement(s)	
H302	Harmful if swallowed.
H332	Harmful if inhaled.
H315	Causes skin irritation.
H318	Causes serious eye damage.
H335	May cause respiratory irritation.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

Trecautionary statement(s) Trevention	
P271 Use only outdoors or in a well-ventilated area.	

Page 2 of 11

ACS Mine Speed F500

Issue Date: 01/11/2019
Print Date: 06/10/2020

P280	Wear protective gloves/protective clothing/eye protection/face protection.
P261	Avoid breathing mist/vapours/spray.
P270	Do not eat, drink or smoke when using this product.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER or doctor/physician.	
P321	Specific treatment (see advice on this label).	
P362	Take off contaminated clothing and wash before reuse.	
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P330	Rinse mouth.	
P332+P313	If skin irritation occurs: Get medical advice/attention.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233 Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
10043-01-3	30-60	aluminium sulfate
15098-87-0	1-10	aluminium fluoride
Not Available	balance	Ingredients determined not to be hazardous

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

- skin contact occurs:

 Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation Pr

- If fumes or combustion products are inhaled remove from contaminated area.
 Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- ► Transport to hospital, or doctor, without delay.

► IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.

- ▶ For advice, contact a Poisons Information Centre or a doctor.
- ▶ Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Ingestion

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

• INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Chemwatch: 5305-94 Version No: 3.1.1.1

Page 3 of 11 **ACS Mine Speed F500**

Issue Date: 01/11/2019 Print Date: 06/10/2020

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination)

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- F Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Treat symptomatically.

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may
--

Advice for firefighters

Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	▶ Non combustible. ▶ Not considered a significant fire risk, however containers may burn. Decomposes on heating and produces: carbon dioxide (CO2) sulfur oxides (SOx) May emit poisonous fumes. May emit corrosive fumes.	
HAZCHEM	Not Applicable	

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite
- Wipe up.
- Place in a suitable, labelled container for waste disposal

Slippery when spilt.

Version No: 3.1.1.1

ACS Mine Speed F500

Issue Date: 01/11/2019 Print Date: 06/10/2020

Moderate hazard

- Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite. **Major Spills**
 - Collect recoverable product into labelled containers for recycling.
 - Neutralise/decontaminate residue (see Section 13 for specific agent).
 - Collect solid residues and seal in labelled drums for disposal.
 - Wash area and prevent runoff into drains.
 - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
 - If contamination of drains or waterways occurs, advise emergency services.

Slippery when spilt.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- ► DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.

Safe handling

- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- Keep containers securely sealed. Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ► DO NOT use aluminium, galvanised or tin-plated containers
- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer
- ► Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas.
- Segregate from alcohol, water.
- Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	aluminium sulfate	Aluminium, soluble salts (as Al)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	aluminium fluoride	Fluorides (as F)	2.5 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
aluminium sulfate	Aluminum sulfate	38 mg/m3	64 mg/m3	380 mg/m3
aluminium fluoride	Aluminum fluoride	19 mg/m3	59 mg/m3	360 mg/m3

Ingredient	Original IDLH	Revised IDLH
aluminium sulfate	Not Available	Not Available
aluminium fluoride	Not Available	Not Available

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Chemwatch: **5305-94**Version No: **3.1.1.1**

Page 5 of 11

ACS Mine Speed F500

Issue Date: 01/11/2019 Print Date: 06/10/2020

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

► Safety glasses with side shields

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Hands/feet protection

Skin protection

Eve and face protection

See Hand protection below

- ► Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

Continued...

Chemwatch: 5305-94 Page 6 of 11 Issue Date: 01/11/2019 Version No: 3.1.1.1 Print Date: 06/10/2020

ACS Mine Speed F500

	Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Straw-coloured liquid with no odour; mixes with water.			
Physical state	Liquid	Relative density (Water = 1)	~1.4	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	
pH (as supplied)	<3.0	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	-20 (freezing pt.)	Viscosity (cSt)	420 @25C	
Initial boiling point and boiling range (°C)	~95	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Miscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Chemwatch: **5305-94**Version No: **3.1.1.1**

Page 7 of 11

ACS Mine Speed F500

Issue Date: 01/11/2019 Print Date: 06/10/2020

Information on toxicological effects

Inhaled	Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.			
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.			
Skin Contact	This material can cause inflammation of the skin on conta The material may accentuate any pre-existing dermatitis of Open cuts, abraded or irritated skin should not be expose Entry into the blood-stream, through, for example, cuts, all prior to the use of the material and ensure that any extern	condition d to this material orasions or lesions, may produce systemic injury with harmful effects. Examine the skir		
Eye	If applied to the eyes, this material causes severe eye dar	nage.		
Chronic	This material can cause serious damage if one is exposed produce severe defects. Substance accumulation, in the human body, may occur a	irways disease, involving difficulty breathing and related whole-body problems. It can be assumed that it contains a substance which can and may cause some concern following repeated or long-term occupational exposure. likely to cause a sensitisation reaction in some persons compared to the general		
	TOXICITY	IRRITATION		
ACS Mine Speed F500	Not Available	Not Available		
	TOXICITY	IRRITATION		
	=6.1 mg/kg ^[2]	Eye (rabbit): 10 mg/24h SEVERE		
	=6200 mg/kg ^[2]			
	10138 mg/kg ^[2]			
	Oral (mouse) LD50: =6.207 mg/kg ^[2]			
aluminium sulfate	Oral (mouse) LD50: 4210 mg/kg ^[2]			
	Oral (mouse) LD50: 6200 mg/kg ^[2]			
	Oral (mouse) LD50: 6207 mg/kg ^[2]			
	Oral (mouse) LD50: 770 mg/kg ^[2]			
	Oral (rat) LD50: >5000 mg/kg ^[2]			
	Oral (rat) LD50: 1930 mg/kg ^[2]			
	TOXICITY	IRRITATION		
aluminium fluoride	Oral (mouse) LD50: 103 mg/kg ^[2]	Eye (rabbit): 500 ppm/24h - mild		
	Oral (rat) LD50: 1800 mg/kg ^[2]			
Legend:	Value obtained from Europe ECHA Registered Substar specified data extracted from RTECS - Register of Toxic E	nces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise		

Oral (rat) TDLo: 10138 mg/kg/8D-C

Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation.

For aluminium compounds:

Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water to bioavailability.

For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds which are ingested with food. This corresponds to a systemically available tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg)

of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe.

Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FAO/WHO Expert

Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as

Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium compounds in food, including food additives. The Committee on Toxicity of chemicals in food, consumer products and the environment (COT) considers that the derivation of this PTWI was sound and that it should be used in assessing potential risks from

dietary exposure to aluminium.
The Federal Institute for Risk A

The Federal Institute for Risk Assessment (BfR) of Germany has assessed the estimated aluminium absorption from antiperspirants. For this purpose, the data, derived from experimental studies, on dermal absorption of aluminium from antiperspirants for healthy and damaged skin was used as a basis. At about 10.5 µg, the calculated systemic intake values for healthy skin are above the 8.6 µg per day that are considered safe for an adult weighing 60 kg. If aluminium-containing antiperspirants are used on a daily basis, the tolerable weekly intake determined by the EFSA is therefore exceeded. The values for damaged skin, for example injuries from shaving, are many times higher. This means that in case of daily use of an aluminium-containing antiperspirant alone, the TWI may be completely exhausted. In addition, further aluminium absorption sources such as food, cooking utensils and other cosmetic products must be taken into account

Systemic toxicity after repeated exposure

No studies were located regarding dermal effects in animals following intermediate or chronic-duration dermal exposure to various forms of aluminium.

When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have produced various effects, including decreased gain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose.

ALUMINIUM SULFATE

Page 8 of 11 ACS Mine Speed F500

Issue Date: **01/11/2019**Print Date: **06/10/2020**

The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent

Reproductive and developmental toxicity:

Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity

High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight or pup weight at birth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetotoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate twas selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium citrate and nitrate and aluminium hydroxide was much lower than that of aluminium citrate This study was used by JECFA as key study to derive the PTWI.

Genotoxicity

Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium salts in experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vivo mutagenicity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels.

Carcinogenicity.

The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons.

Neurodegenerative diseases.

Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases. Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment. Contact sensitivity:

It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome.

Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent tiching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium

Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste

ALUMINIUM FLUORIDE

No significant acute toxicological data identified in literature search.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Lethal Dose - Adult 1000-4000 mg [ALCAN MSDS - CCINFO 2199437]

ALUMINIUM SULFATE & ALUMINIUM FLUORIDE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓

ACS Mine Speed F500

Issue Date: **01/11/2019**Print Date: **06/10/2020**

Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: X – Data either not available or does not fill the criteria for classification

— Data available to make classification

SECTION 12 Ecological information

Toxicity

ACS Mine Speed F500	Endpoint	Test Duration (hr)	Species	\	/alue	Source
	Not Available	Not Available	Not Available	Not Available Not Available		Not Available
	Endpoint	Test Duration (hr)	Species	Value		Source
aluminium sulfate	LC50	96	Fish	>0.42m	>0.42mg/L	
	EC50	48	Crustacea	0.33mg	0.33mg/L	
	EC50	72	Algae or other aquatic plants	>100m	>100mg/L	
	NOEC	720	Crustacea	0.001-0).092mg/L	2
aluminium fluoride	Endpoint	Test Duration (hr)	Species		Value	Sourc
	EC50	48	Crustacea		>7.6mg/L	2
	EC50	72 Algae or other aquatic plants			>7.6mg/L	2
	EC10	72 Algae or other aquatic plants			1.8mg/L	2
	NOEC	72	Algae or other aquatic plants		1.7mg/L	2

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
aluminium sulfate	HIGH	HIGH

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Bioaccumulative potential

Ingredient	Bioaccumulation	
aluminium sulfate	LOW (LogKOW = -2.2002)	

Mobility in soil

Ingredient	Mobility
aluminium sulfate	LOW (KOC = 6.124)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwis

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment

- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO	
HAZCHEM	Not Applicable	

ACS Mine Speed F500

Issue Date: **01/11/2019**Print Date: **06/10/2020**

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

aluminium sulfate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

aluminium fluoride is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory Status

National Inventory	Status
Australia - AIIC	Yes
Australia - Non-Industrial Use	No (aluminium sulfate; aluminium fluoride)
Canada - DSL	Yes
Canada - NDSL	No (aluminium sulfate; aluminium fluoride)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	01/11/2019
Initial Date	18/05/2018

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	18/05/2018	Fire Fighter (fire/explosion hazard), Spills (major), Spills (minor)
3.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors Chemwatch: 5305-94 Page 11 of 11 Version No: 3.1.1.1

ACS Mine Speed F500

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Issue Date: 01/11/2019

Print Date: 06/10/2020