River Sands Chemwatch: **5360-15** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: **07/16/2019**Print Date: **07/22/2019**L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING # **Product Identifier** | Product name | ACS Mine Flow 21 | |-------------------------------|------------------| | Synonyms | Not Available | | Other means of identification | Not Available | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Super plasticizer for cement and concrete. # Details of the supplier of the safety data sheet | Registered company name | River Sands | |-------------------------|--| | Address | 683 Beenleigh-Redland Bay Road Carbrook QLD 4130 Australia | | Telephone | +61 7 3412 8111 | | Fax | +61 7 3287 6445 | | Website | www.riversands.com.au | | Email | info@riversands.com.au | # **Emergency telephone number** | Association /
Organisation | River Sands | |-----------------------------------|---------------| | Emergency telephone numbers | 13 11 26 | | Other emergency telephone numbers | Not Available | # **SECTION 2 HAZARDS IDENTIFICATION** # Classification of the substance or mixture | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # Label elements Hazard pictogram(s) SIGNAL WORD | WARNING # Hazard statement(s) | H315 | Causes skin irritation. | |------|--------------------------------| | H319 | Causes serious eye irritation. | Chemwatch: 5360-15 Version No: 2.1.1.1 Page 2 of 11 Issue Date: 07/16/2019 Print Date: 07/22/2019 **ACS Mine Flow 21** # Precautionary statement(s) Prevention P280 Wear protective gloves/protective clothing/eye protection/face protection. # Precautionary statement(s) Response | P321 | Specific treatment (see advice on this label). | |----------------|--| | P362 | Take off contaminated clothing and wash before reuse. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal Not Applicable # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** # **Substances** See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] | Name | |------------|-----------|---| | 19532-03-7 | NotSpec | 2-amino-1,5-naphthalenedisulfonic acid, monosodium salt | | 7757-82-6 | NotSpec | sodium sulfate | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | | |---|---|--|--|--| | Skin Contact | skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | | | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | | | | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintand prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably d Seek medical advice. | | | | | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 FIREFIGHTING MEASURES** # **Extinguishing media** - ► Water spray or fog. - Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. # Special hazards arising from the substrate or mixture | -p | Tom the substitute of implication | | | |-------------------------|---|--|--| | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignitio
may result | | | | Advice for firefighters | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | | | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit corrosive fumes. | | | # **SECTION 6 ACCIDENTAL RELEASE MEASURES** **HAZCHEM** # Personal precautions, protective equipment and emergency procedures Not Applicable See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. Slippery when spilt. | |--------------|---| | Major Spills | Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. Slippery when spilt. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling ### **ACS Mine Flow 21** # ▶ DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. • Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. ▶ DO NOT enter confined spaces until atmosphere has been checked. ▶ Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. Safe handling ▶ When handling, **DO NOT** eat, drink or smoke. ▶ Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Other information ▶ Store in a cool, dry, well-ventilated area. • Store away from incompatible materials and foodstuff containers. ▶ Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities | Conditions for safe storage, moraling any most parison to | | | |---|--|--| | Suitable container | Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | | | Storage incompatibility | ► Avoid reaction with oxidising agents | | # SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION # **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available # **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------|---------------------------|-----------|-----------|-----------| | sodium sulfate | Sodium sulfate, anhydrous | 9.8 mg/m3 | 110 mg/m3 | 650 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | 2-amino-
1,5-naphthalenedisulfonic
acid, monosodium salt | Not Available | Not Available | | sodium sulfate | Not Available | Not Available | # MATERIAL DATA # **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls Chemwatch: **5360-15**Version No: **2.1.1.1** # Page 5 of 11 ACS Mine Flow 21 Issue Date: **07/16/2019**Print Date: **07/22/2019** | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection Eye and face protection # ▶ Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection Hands/feet protection # See Hand protection below - See Hand protection below - ▶ Wear safety footwear or safety gumboots, e.g. Rubber ▶ Wear chemical protective gloves, e.g. PVC. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection ▶ Barrier cream. Skin cleansing cream. ▶ Eye wash unit. # Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class1 | - | | up to 50 | 1000 | - | A-AUS / Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | | Airline** | * - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ### Information on basic physical and chemical properties **Appearance** Light brown coloured clear liquid with slight pungent odour; mixes with water. Relative density (Water = Liquid 1.2 Physical state 1) Partition coefficient Not Available Not Available Odour n-octanol / water Auto-ignition temperature **Odour threshold** Not Available Not Available (°C) Decomposition pH (as supplied) ~10 Not Available temperature # **ACS Mine Flow 21** | Melting point / freezing point (°C) | Not Applicable | Viscosity (cSt) | Not Available | |--|----------------|----------------------------------|----------------| | Initial boiling point and boiling range (°C) | ~100 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component
(%vol) | *58 (water) | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** Not Available | formation on toxicolog | ation on toxicological effects | | | |------------------------|--|---------------|--| | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | | | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. | | | | Skin Contact | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition | | | | Еуе | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. | | | | | T . | | | | ACS Mine Flow 21 | TOXICITY | IRRITATION | | | ACS WITHE FIOW 21 | Not Available | Not Available | | Not Available Issue Date: **07/16/2019**Print Date: **07/22/2019** | 2-amino- | TOXICITY Not Available | IRRITATION Not Available | | |-----------------------|--|---|--| | acid, monosodium salt | TOXICITY | IRRITATION | | | sodium sulfate | Oral (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) $^{f l1f l}$ | | | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | # 2-AMINO-1,5-NAPHTHALENEDISULFONIC ACID, MONOSODIUM SALT SODIUM SULFATE No significant acute toxicological data identified in literature search. Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. ### for sodium sulfate: Sulfate (and sodium) ions are important constituents of the mammalian body and of natural foodstuffs and there is a considerable daily turnover of both ions (several grams/day expressed as sodium sulfate). Near-complete absorption of dietary sulfates may occur at low concentration, depending on the counter-ion, but absorption capacity can be saturated at higher artificial dosages resulting in cathartic effects. Absorption through skin can probably be ignored since sodium sulfate is fully ionised in solution. One source suggests that very high levels of sulfate in urine may occur due to absorption from dust inhalation. At dietary levels, excretion is mainly in the urine. Sulfates are found in all body cells, with highest concentrations in connective tissues, bone and cartilage. # Sulfates play a role in several important metabolic pathways, including those involved in detoxification processes. The acute toxicity (LD50) of sodium sulfate has not been reliably established but is probably far in excess of 5000 mg/kg. In an inhalation study with an aerosol, no adverse effects were found at 10 mg/m3. Also human data indicate a very low acute toxicity of sodium sulfate. Human clinical experience indicates that very high oral doses of sodium sulfate, 300 mg/kg bw up to 20 grams for an adult, are well tolerated, except from (intentionally) causing severe diarrhoea. WHO/FAO did not set an ADI for sodium sulfate. There is no data on acute dermal toxicity, but this is probably of no concern because of total ionisation in solution. Sodium sulfate is not irritating to the skin and slightly irritating to the eyes. Respiratory irritation has never been reported. Based on wide practical experience with sodium sulfate, in combination with the natural occurrence of sulfate in the body, sensitising effects are highly unlikely. No suitable dermal and inhalation repeated-dose toxicity studies are available. Valid oral repeated dose toxicity studies with 21, 28 and 35 day studies in hens and pigs are available. Toxicity was confined to changes in bodyweight, water and feed intake and diarrhoea. These changes occurred only at very high doses of sodium sulfate. In ruminants, high concentrations of sulfate in food may result in the formation of toxic amounts of sulfites by bacterial reduction the rumen, leading to poly-encephalomalacia. The available data do not allow the derivation of a NOAEL. Based on available consumer data, a daily dose of around 25 mg/kg/day is well tolerated by humans. There are no data on *in vitro* and *in vitro* genotoxicity, apart from a negative Ames test. There is no valid oral carcinogenicity study. Limited data from experimental studies support the notion that a substance that is abundantly present in and essential to the body is unlikely to be carcinogenic. Limited data of poor validity did not provide an indication of toxicity to reproduction. Equivocal Tumorigen by RTECS criteria. Reproductive effector in mice. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|-----------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated
Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | ✓ – Data available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** # **Toxicity** | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |---|------------------|--------------------|---|----------------------|------------------| | ACS Mine Flow 21 | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | 2-amino- | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | 1,5-naphthalenedisulfonic acid, monosodium salt | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | sodium sulfate | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | ca.0.001-
100mg/L | 2 | | | EC50 | 48 | Crustacea | 2-564mg/L | 2 | | | EC50 | 96 | Algae or other aquatic plants | 1900mg/L | 4 | | | NOEC | 168 | Fish | <220mg/L | 4 | | l egend: | Extracted from | I | CHA Registered Substances - Fcotoxicolo | 1 | 1 | Legend Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data # **DO NOT** discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |----------------|-------------------------|------------------| | sodium sulfate | HIGH | HIGH | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | |----------------|------------------------| | sodium sulfate | LOW (LogKOW = -2.2002) | # Mobility in soil | Ingredient | Mobility | |----------------|-------------------| | sodium sulfate | LOW (KOC = 6.124) | # **SECTION 13 DISPOSAL CONSIDERATIONS** # Waste treatment methods **Product / Packaging** ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. ▶ It may be necessary to collect all wash water for treatment before disposal. ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 TRANSPORT INFORMATION** disposal # **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture 2-AMINO-1,5-NAPHTHALENEDISULFONIC ACID, MONOSODIUM SALT(19532-03-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS Not Applicable # SODIUM SULFATE(7757-82-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 18: List of products to which the Code does not apply # **National Inventory Status** | valional inventory Status | lational inventory Status | | | |----------------------------------|--|--|--| | National Inventory | Status | | | | Australia - AICS | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Canada - DSL | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Canada - NDSL | No (sodium sulfate) | | | | China - IECSC | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Europe - EINEC / ELINCS /
NLP | Yes | | | | Japan - ENCS | Yes | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Philippines - PICCS | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | USA - TSCA | Yes | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Vietnam - NCI | Yes | | | | Russia - ARIPS | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Thailand - TECI | No (2-amino-1,5-naphthalenedisulfonic acid, monosodium salt) | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | | # **SECTION 16 OTHER INFORMATION** | Revision Date | 07/16/2019 | |---------------|------------| | Initial Date | 07/16/2019 | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists Chemwatch: 5360-15 Page 11 of 11 Issue Date: 07/16/2019 Version No: 2.1.1.1 Print Date: 07/22/2019 **ACS Mine Flow 21** STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.